

Validating protein biomarkers with mass spectrometry and molecular biology: a revolution

IAN A. BLAIR, PHD

Penn SRP Center

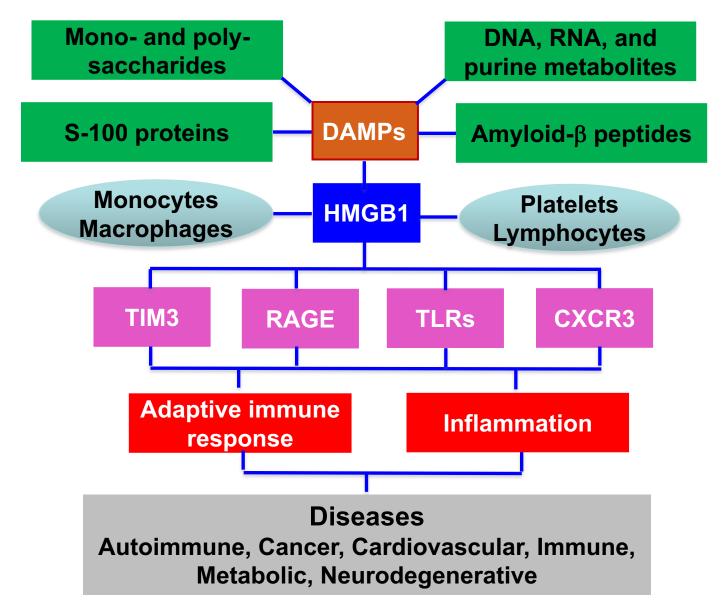
Center of Excellence in Environmental Toxicology University of Pennsylvania Philadelphia, PA 19104

Biomarker discovery: the problem in 2011

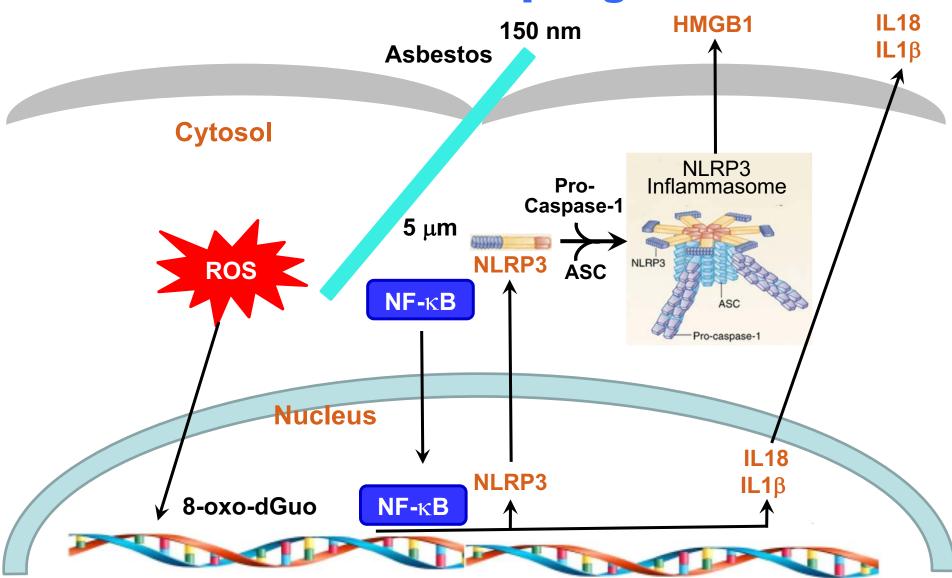
Estimated number of papers claiming a biomarker

150,000

\rightarrow


~100

Estimated number of biomarkers in routine clinical use


Poste G. Nature 2011;69:156

No significant change since 2011 Biomarkers needed for early detection of cancer The danger molecule - high mobility group box 1 (HMGB1) as a case study

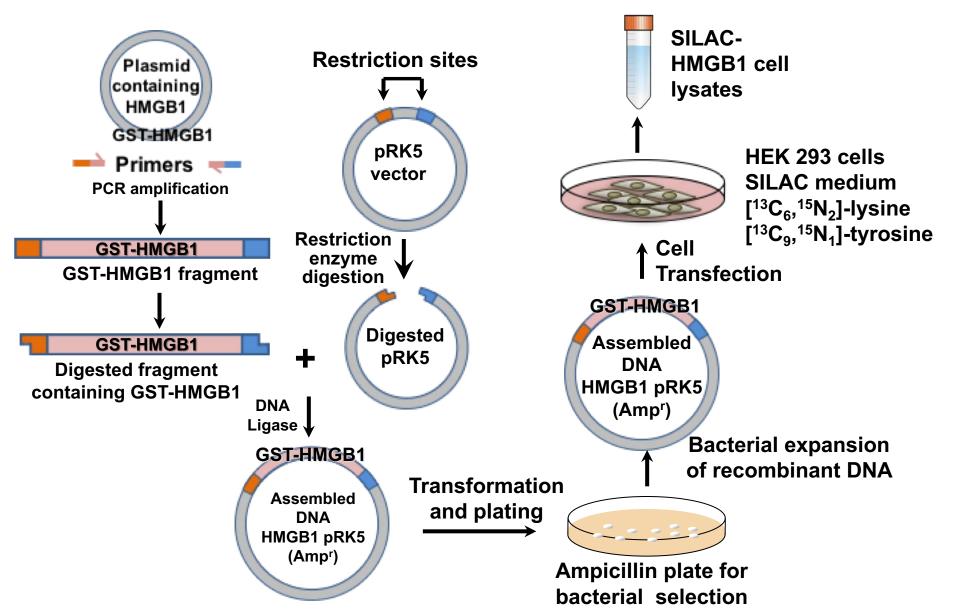
Danger associated molecular pattern (DAMP) molecules

Asbestos-induced release of HMGB1 from macrophages

Dostert et al. Science. 2008;320:674

Serum HMGB1 concentrations in cancer cases measured by ELISA

Study	Disease Type	Control mean (ng/mL)	Case mean (ng/mL)	Reference
1	Leukemia and lymphoma	0.9	3.1	Inoue 2013
2	Pancreatic	1.2	2.0	Wittwer 2013
3	Head and neck squamus cell	1.5	4.0	Wild 2012
4	Breast	2.0	4.5	Sun 2011
5	NSCLC	3.0	7.1	Niki 2017
6	Gastirc	3.9	16,5	Qiu 2014
7	Mesothelioma (pleural)	5.4	27.0	Tabata 2013
8	Hepatocellular carcinoma	7.0	84.2	Cheng 2008
9	Cervical	7.6	50.8	Sheng 2009
10	Colorectal	39.7	58.8	Lee 2012


Analysis of serum HMGB1: the problems

#	Issue	Consequence	Reference
1	Serum HMGB1 autoantibodies are present in normal serum and from diseeased individuals	Serum autoantibodies compete with ELISA antibodies for HMGB1 leading to incorrect values for serum HMGB1	Sims 2010 Adulahad 2011 Hwang 2013
2	HMGB1 binds to haptoglobin, a high abundance serum protein (30- 200 mg/dL)	HMGB1 binding to serum haptoglobin competes with ELISA antibodies leading to incorrect values for serum HMGB1	Yang 2015
3	Amino acid sequences of HMGB1 and HMGB2 are 74 % similar,	ELISA antibodies to HMGB1 can cross-react with HMGB2, which would give incorrect values for serum HMGB1	Yamada 2006
4	22 lysine residues in HMGB1 are reported to be acetylated	Acetylation of HMGB1 could inhibit binding to ELISA antibodies and give incorrect values for serum HMGB1 concentrations	Sterner 1979 Bonaldi 2003 Rabadi 2004 Pasheva 2015
5	Platelets contain HMGB1, which is released when they aggregate during blood clotting	Normal platelets contain approximately 3 ng of HMGB1/mL of whole blood that will contribute to concentations of serum HMGB1	Vogel 2016
6	Monocytes and lymphcytes contain HMGB1, which is released when blood clots	Monocyte and lymphocyte HMGB1 will contribute to concentrations of serum HMGB1	Maganelli 2010 Palmblad 2015 Cerwenka 2016

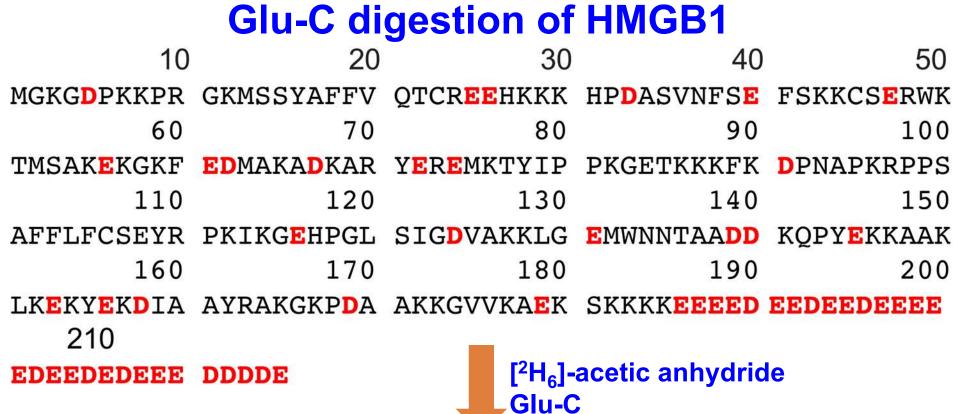
Analysis of serum HMGB1: the solutions

#	Issue	Potential solution
1	Serum HMGB1 autoantibodies are present in normal serum and from diseased individuals	Synthesize labeled HMGB1 and allow to equilibrate with endogenous HMGB1 bound to autoantibodies
2	HMGB1 binds to haptoglobin, a high abundance serum protein (30-200 mg/dL)	Synthesize labeled HMGB1 and allow to equilibrate with endogenous HMGB1 bound to haptoglobin
3	Amino acid sequences of HMGB1 and HMGB2 are 74 % similar,	Conduct stable isotope dilution LC-MS analysis of prteolytic peptides that are3 specific for HMGB1
4	22 lysine residues in HMGB1 are reported to be acetylated	Convert serum HMGB1 to a single molecular form by acetylation with labeled acetic anhydride
5	Platelets contain HMGB1, which is released when they aggregate during blood clotting	Compare HMGB1 in plasma containing anti-coagulant with serum HMGB1
6	Monocytes and lymphocytes contain HMGB1, which is released when blood clots	Compare HMGB1 in plasma containing anti-coagulant with serum HMGB1

Stable isotope labeling by amino acids in cell culture (SILAC) for labeled HMGB1

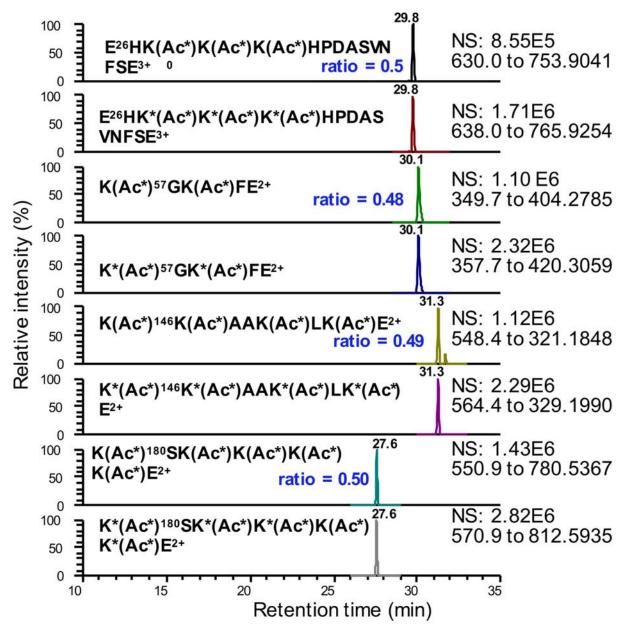
Glu-C digestion of HMGB1

10	20	30	40	50
MGKGDPKKPR	GKMSSYAFFV	QTCR EE HKKK	HP D ASVNFS E	FSKKCS <mark>E</mark> RWK
60	70	80	90	100
TMSAKEKGKF	ED MAKA D KAR	YEREMKTYIP	PKGETKKKFK	DPNAPKRPPS
110	120	130	140	150
AFFLFCSEYR	PKIKG <mark>E</mark> HPGL	SIGDVAKKLG	EMWNNTAADD	KQPY E KKAAK
160	170	180	190	200
LKEKYEKDIA	AYRAKGKPDA	AKKGVVKA E K	SKKKKEEEED	EEDEEDEEEE
210		_		
EDEEDEDEEE	DDDDE	Glu-0	C	

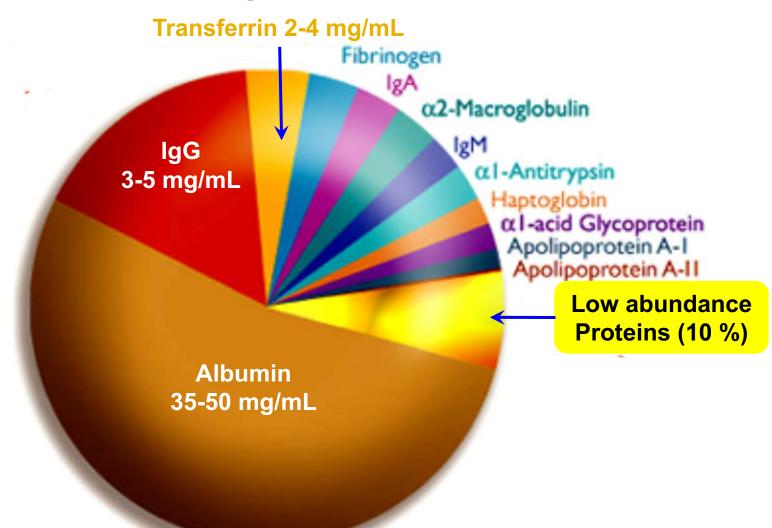

<u>NLS1</u>: E²⁵HKKKHPD³³ H²⁶KKKHPD³³ K⁵⁶GKFE⁶⁰ A¹⁷⁰AKKGVVKAE¹⁷⁹ <u>NLS2</u>: K¹⁸⁰SKKKKE¹⁸⁶

Five Glu-C peptides contain eleven of the important acetylation sites Peptides too polar for consistent LC-MS analysis

$Ac^* = C[^2H_3]CO$


K^{*56}GK(Ac*)FE⁶⁰ A¹⁷⁰AK(Ac*)K(Ac*)GVVK(Ac*)AE¹⁷⁹ NLS2: K(Ac*)¹⁸⁰SK(Ac*)K(Ac*)K(Ac*)K(Ac*)E¹⁸⁶

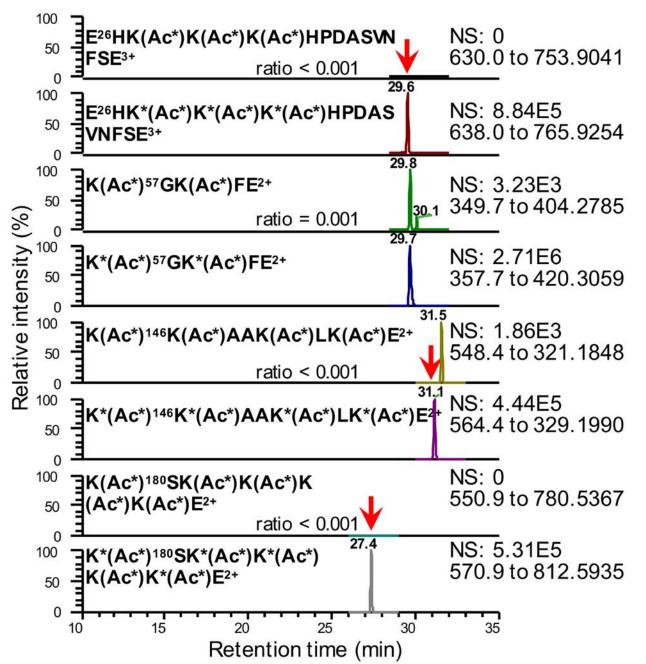
 $\underline{\text{NLS1}}: \underline{\text{E}}^{25}\text{HK}(\text{Ac}^*)\text{K}(\text{Ac}^*)\text{HP}\underline{\text{D}}^{33} \quad \text{H}^{26}\text{K}(\text{Ac}^*)\text{K}(\text{Ac}^*)\text{K}(\text{Ac}^*)\text{HP}\underline{\text{D}}^{33}$



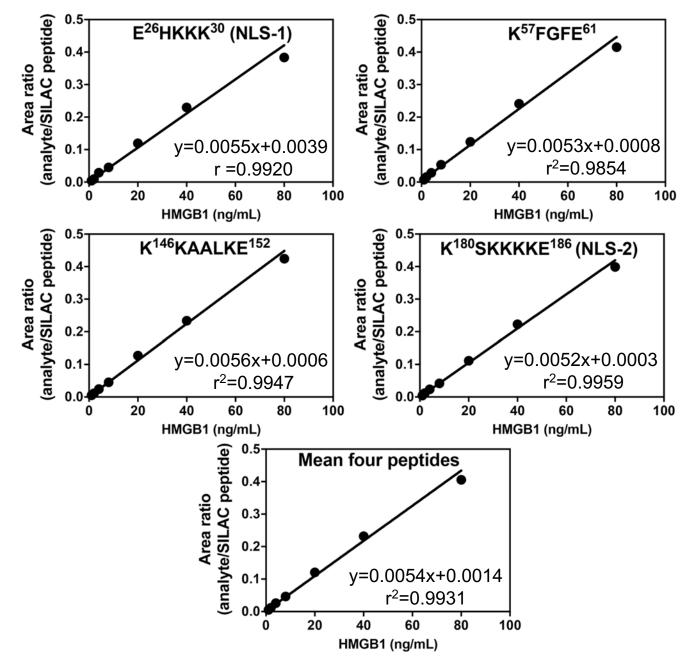
Acetylation with labeled acetic anhydride and

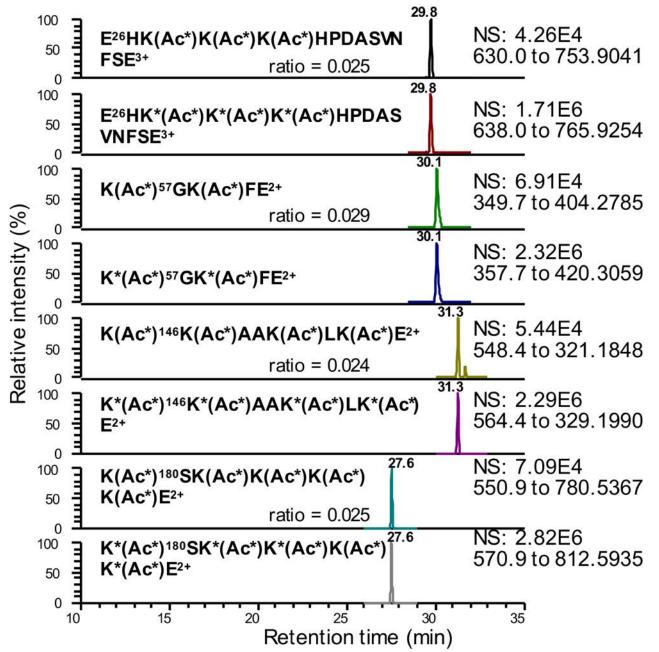
UHPLC-MS analysis of the SILAC-HMGB1 standard coupled with acetylation and Glu-C digestion

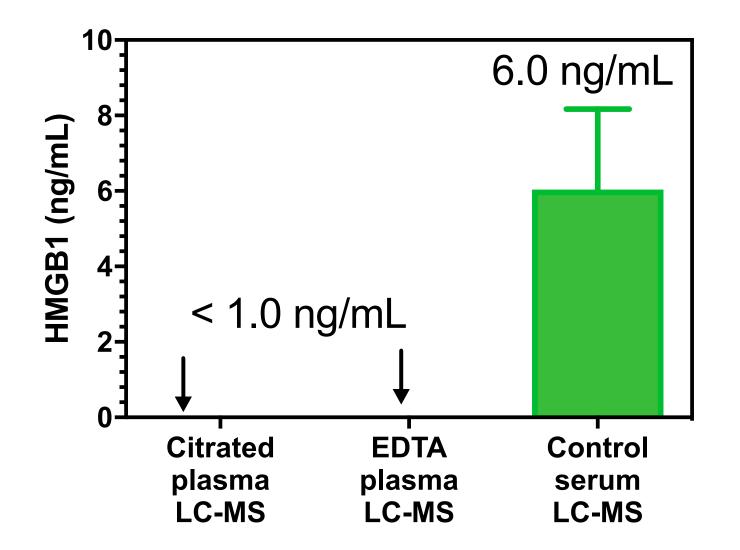
Challenges in the analysis of low abundance serum proteins



HMGB1 concentrations in healthy control serum are approximately 2.2 ng/mL or 22 x 10⁶ lower than albumin


Final scheme for analysis of HMGB1 in plasma and serum


Analysis of HMGB1 in citrated plasma


Standard curves for HMGB1 in citrated plasma

Analysis of serum HMGB1 by UPLC-HRMS

Levels of serum HMGB1 determined by stable isotope dilution UPLC-HRMS (n=24)

Big picture

- Combining methodologies can accelerate biomarker development and molecular understanding of disease
 - Immunopurification permits efficient isolation of very low abundance proteins from biofluids
 - Mass spectrometry provides specificity, precision, accuracy, and ultra-high sensitivity for biomarker analysis
 - Molecular biology provides protein internal standards and structural confirmation of protein biomarkers
- **HMGB1** is not present in plasma from healthy volunteers
- HMGB1 is secreted when blood is allowed to clot
 - **HMGB1** is not a circulating biomarker
 - Serum HMGB1 studies (> 850) will have to be re-evaluated
 - Plasma or whole blood should be used for biomarker studies <u>not</u> serum
 - Acetylation, known to occur on 29 lysine residues, should be monitored

Acknowledgements

University of Pennsylvania

Anil Vachani Trevor Penning Wei-Ting Hwang

T32ES019851

P42ES023720

P30ES013508

Kevin